Artificial intelligence


In the field of computer science, artificial intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. Computer science defines AI research as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. More specifically, Kaplan and Haenlein define AI as ¸a systemıs ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation. Colloquially, the term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".
Artificial intelligence was founded as an academic discipline in 1956, and in the years since has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success and renewed funding. For most of its history, AI research has been divided into subfields that often fail to communicate with each other. These sub-fields are based on technical considerations, such as particular goals (e.g. "robotics" or "machine learning"), the use of particular tools ("logic" or artificial neural networks), or deep philosophical differences. Subfields have also been based on social factors (particular institutions or the work of particular researchers).
The field of AI research was born at a workshop at Dartmouth College in 1956. Attendees Allen Newell (CMU), Herbert Simon (CMU), John McCarthy (MIT), Marvin Minsky (MIT) and Arthur Samuel (IBM) became the founders and leaders of AI research. They and their students produced programs that the press described as "astonishing": computers were learning checkers strategies (c. 1954) (and by 1959 were reportedly playing better than the average human), solving word problems in algebra, proving logical theorems (Logic Theorist, first run c. 1956) and speaking English. By the middle of the 1960s, research in the U.S. was heavily funded by the Department of Defense and laboratories had been established around the world. AI's founders were optimistic about the future: Herbert Simon predicted, "machines will be capable, within twenty years, of doing any work a man can do". Marvin Minsky agreed, writing, "within a generation ... the problem of creating 'artificial intelligence' will substantially be solved".
A typical AI perceives its environment and takes actions that maximize its chance of successfully achieving its goals. An AI's intended goal function can be simple ("1 if the AI wins a game of Go, 0 otherwise") or complex ("Do actions mathematically similar to the actions that got you rewards in the past"). Goals can be explicitly defined, or can be induced. If the AI is programmed for "reinforcement learning", goals can be implicitly induced by rewarding some types of behavior and punishing others. Alternatively, an evolutionary system can induce goals by using a "fitness function" to mutate and preferentially replicate high-scoring AI systems; this is similar to how animals evolved to innately desire certain goals such as finding food, or how dogs can be bred via artificial selection to possess desired traits.Some AI systems, such as nearest-neighbor, instead reason by analogy; these systems are not generally given goals, except to the degree that goals are somehow implicit in their training data. Such systems can still be benchmarked if the non-goal system is framed as a system whose "goal" is to successfully accomplish its narrow classification task.
Early researchers developed algorithms that imitated step-by-step reasoning that humans use when they solve puzzles or make logical deductions. By the late 1980s and 1990s, AI research had developed methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.
These algorithms proved to be insufficient for solving large reasoning problems, because they experienced a "combinatorial explosion": they became exponentially slower as the problems grew larger. In fact, even humans rarely use the step-by-step deduction that early AI research was able to model. They solve most of their problems using fast, intuitive judgements.