**Contact**

# Analog computer

An analog computer or analogue computer is a type of computer that uses the continuously changeable aspects of physical phenomena such as electrical, mechanical, or hydraulic quantities to model the problem being solved. In contrast, digital computers represent varying quantities symbolically, as their numerical values change. As an analog computer does not use discrete values, but rather continuous values, processes cannot be reliably repeated with exact equivalence, as they can with Turing machines. Unlike machines used for digital signal processing, analog computers do not suffer from the discrete error caused by quantization noise. Instead, results from analog computers are subject to continuous error caused by electronic noise.

Setting up an analog computer required scale factors to be chosen, along with initial conditions´that is, starting values. Another essential was creating the required network of interconnections between computing elements. Sometimes it was necessary to re-think the structure of the problem so that the computer would function satisfactorily. No variables could be allowed to exceed the computer's limits, and differentiation was to be avoided, typically by rearranging the "network" of interconnects, using integrators in a different sense.

The slide rule was invented around 1620–1630, shortly after the publication of the concept of the logarithm. It is a hand-operated analog computer for doing multiplication and division. As slide rule development progressed, added scales provided reciprocals, squares and square roots, cubes and cube roots, as well as transcendental functions such as logarithms and exponentials, circular and hyperbolic trigonometry and other functions. Aviation is one of the few fields where slide rules are still in widespread use, particularly for solving time–distance problems in light aircraft.

Starting in 1929, AC network analyzers were constructed to solve calculation problems related to electrical power systems that were too large to solve with numerical methods at the time.[15] These were essentially scale models of the electrical properties of the full-size system. Since network analyzers could handle problems too large for analytic methods or hand computation, they were also used to solve problems in nuclear physics and in the design of structures. More than 50 large network analyzers were built by the end of the 1950s.

However, the difference between these systems is what makes analog computing useful. If one considers a simple mass–spring system, constructing the physical system would require making or modifying the springs and masses. This would be followed by attaching them to each other and an appropriate anchor, collecting test equipment with the appropriate input range, and finally, taking measurements. In more complicated cases, such as suspensions for racing cars, experimental construction, modification, and testing is both complicated and expensive.